As climate variability and extremes increasingly challenge water security across the globe, the International Water Management Institute (IWMI) is stepping up its efforts to provide data-driven solutions that strengthen resilience and inform adaptive responses. IWMI collects and integrates data to improve the assessment of the impacts of climate change on water resources and extremes.
IWMI develops models, tools and methods to assess the effectiveness and tradeoffs of adaptation under a range of future scenarios to ensure that climate change adaptation is based on scientific knowledge of (local) future climate change. IWMI’s work:
Assesses climate and water risks and develop knowledge products, platforms and dashboards to support anticipatory action to manage current and future risks at multiple scales
Develops methodologies and tools for hydrological forecasting on timescales ranging from weeks to decades to improve management of water, land, food and ecosystems
Creates technical tools to help stakeholders (e.g., government, private sector and farmers) manage climate risks and extremes
Expands methods and tools for addressing water management issues in Asian and African urban areas
This paper develops a conceptual framework with an indicator-based approach to assess Climate-Smart Villages (CSVs) and applies it to case study sites in Lao PDR (Ekxang CSV), Cambodia (Rohal Suong CSV), and Vietnam (Tra Hat CSV) in Southeast Asia. The intensification, extensification, diversification, commercialization, alteration of practices, use of common lands, migration strategies that can augment climate resilience, farm income, assets, and food security are assessed based on a composite index of the strategies and key outcome variables. The study demonstrates a method that can be applied widely for assessing climate-smart agriculture strategies and finding possible entry points for climate-smart interventions. The influence of gender in resource control and livelihood strategies is also discussed. It is also evident that the climate-smart interventions can augment different livelihood strategies of farmers and enhance the developmental and climate resilience outcomes. There is a need to prioritize the possible interventions in each case and implement them with the help of donor agencies, local institutions, and government offices.
Case studies / Assets / Migration / Gender / Irrigation canals / Land use / Commercialization / Diversification / Extensification / Intensification / Agricultural production / Villages / Climate-smart agriculture / Indicators / Living standards / Strategies / Household income / Farmers / Resilience / Climate change / Food security Record No:H049238
The discourse on the need for water, energy, and food security has dominated the development agenda of southern African countries, centred on improving livelihoods, building resilience, and regional integration. About 60% of the population in the Southern African Development Community (SADC) live in rural areas relying mainly on rainfed agriculture, lacking access to clean water and energy, yet the region is endowed with vast natural resources. The water-energy-food (WEF) nexus is a conceptual framework that presents opportunities for greater resource coordination, management, and policy convergence across sectors. This is particularly relevant in the SADC region as resources are transboundary and supports efforts linked to regional integration and inclusive socio-economic development and security. We conducted an appraisal of WEF-related policies and institutions in SADC and identified linkages among them. The present ‘silo’ approach in resource management and allocation, often conducted at the national level, contributes to the region’s failure to meet its development targets, exacerbating its vulnerabilities. The lack of coordination of WEF nexus synergies and trade-offs in planning often threatens the sustainability of development initiatives. We highlighted the importance of the WEF nexus to sustainably address the sectoral coordination of resources through harmonised institutions and policies, as well as setting targets and indicators to direct and monitor nexus developments. We illustrate the significance of the nexus in promoting inclusive development and transforming vulnerable communities into resilient societies. The study recommends a set of integrated assessment models to monitor and evaluate the implementation of WEF nexus targets. Going forward, we propose the adoption of a regional WEF nexus framework.
Assessment / Models / Policies / Institutions / Regional development / SADC countries / Agricultural production / Poverty / Living standards / Sustainable Development Goals / River basins / International waters / Resilience / Climate change / Nexus / Food security / Energy resources / Water availability / Water resources Record No:H048729
The USDA Natural Resources Conservation Service (NRCS) developed the Mississippi River Basin Healthy Watersheds Initiative (MRBI) program to improve the health, water quality and wildlife habitat within the Mississippi River Basin. Lake Conway Point Remove (LCPR) watershed was identified as one of the watersheds for the MRBI program implementation. The goal of this paper is to evaluate the effectiveness of the MRBI program in LCPR watershed using a computer simulation model. Seven best management practices (BMPs) (pond, wetland, pond and wetland, cover crops, vegetative filter strips, grassed waterways and forage and biomass planting) were modelled under four placement strategies: random placement in 30% of the watershed, random placement in 30% hydrologic response units (HRUs) of the high priority hydrological unit code (HUCs), placement in the top 30% of the high priority HUCs, and top 30% of the HRUs in the HUCs near the outlet of the watershed. The model was calibrated for flow for the period 1987–2006 and validated for the period 2007–2012. Sediment and nutrients were validated from 2011 to 2012. Out of the BMPs evaluated, grassed waterways proved to be the most effective BMP in reducing sediment and nutrient loads from row crop (soy beans) and pasture fields. Reductions at the watershed outlet ranged 0–1% for flow, 0.28–14% for sediment, 0.3–10% for TP and 0.3–9% for TN. Relatively higher reductions were observed at the subwatershed level, flow reductions ranged 0–51%, sediment reductions -1 to 79%, TP -1 to 65% and TN -0.37 to 66% depending on BMP type, placement scenario, and watershed characteristics. The results from this study provide the data to help prioritize monitoring needs for collecting watershed response data in LCPR and BMP implementation evaluations, which could be used to inform decisions in similar studies.
Biomass production / Forage / Grassland management / Cover plants / Crop management / Simulation models / Land use / Soils / Wetlands / Ponds / Stream flow / Water quality / Development programmes / Best practices / Resource conservation / Watersheds Record No:H048717