The aim of the Resource Recovery & Reuse (RRR) Series is to present applied research on the safe recovery of water, nutrients, and energy from domestic and agro-industrial waste streams. IWMI’s research on RRR includes different lines of action:
Developing and testing scalable RRR business models.
Assessing and mitigating risks from RRR for public health and the environment.
Supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste.
Improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment.
The RRR series of documents present summaries and reviews of the research and resulting application guidelines, targeting development experts and others in the research-for-development continuum.
The RRR Series originated in 2014 under the CGIAR Research Program on Water, Land and Ecosystems (WLE), and continued since 2021 under the CGIAR Initiatives on Resilient Cities and Nature-Positive Solutions.
IWMI works closely with the World Health Organization (WHO), the Food and Agriculture Organization of the United Nations (FAO), the United Nations Environment Programme (UNEP), the United Nations University (UNU), and many national and international partners across the globe.
There is a strong link between gender and energy in view of food preparation and the acquisition of fuel, especially in rural areas. This is demonstrated in a range of case studies from East and West Africa, where biochar, human waste and other waste resources have been used to produce briquettes or biogas as additional high-quality fuel sources. The synthesis of the cases concludes that resource recovery and reuse for energy offers an alternative to conventional centralized grid projects which, while attractive to investors and large-scale enterprises, do not necessarily provide job opportunities for marginalized communities. Reusing locally available waste materials for energy production and as soil ameliorant (in the case of biochar) in small enterprises allows women and youth who lack business capital to begin modest, locally viable businesses. The case studies offer concrete examples of small-scale solutions to energy poverty that can make a significant difference to the lives of women and their communities.
Case studies / Research and development / Community involvement / Gasifiers / Biodigesters / Farmers organizations / Living standards / Empowerment / Investment / Biomass / Biochar / Biogas / Economic impact / Health hazards / Production factors / Supply chain / Refugees / Households / Urban areas / Sanitation / Marketing / Business enterprises / Briquettes / Fuels / Excreta / Human wastes / Waste management / Heating / Cooking / Renewable energy / Energy resources / Energy demand / Energy generation / Poverty / Equity / Role of women / Gender / Bioenergy / Resource management / Resource recovery Record No:H048999
To understand the full value of Resource Recovery and Reuse (RRR), a systematic assessment approach that balances complexity with practicality is required. This report highlights the methods available for quantifying and valuing social, environmental and economic costs and benefits of RRR, focusing on Cost-Benefit Analysis (CBA) as the primary framework. Rather than prescribing a standardized technique for conducting CBA for RRR, this report presents broad frameworks and several examples that can be catered to individual contexts. This results in a suggested eight-step process accompanied with suggested assessment techniques which have to be tailored to the type of question the assessment is meant to answer and related system boundaries.
Case studies / Nutrients / Urban areas / Living standards / Social aspects / Fortification / Developing countries / Rural communities / Anaerobic digesters / Composting / Biogas / Energy generation / Groundwater management / Equity / Ecosystem services / Farming systems / Decision analysis / Decision making / Faecal sludge / Waste management / Waste disposal / Food wastes / Solid wastes / Municipal wastes / Organic wastes / Industrial wastes / Agricultural wastes / Agroindustrial sector / Wastewater treatment / Cost benefit analysis / Economic growth / Economic value / Environmental impact assessment / Socioeconomic environment / Water reuse / Resource management / Resource recovery Record No:H049081
The safe recovery of nutrients from our waste streams allows us to address the challenges of waste management and soil nutrient depletion conjointly. Commercialization of waste-based organic fertilizers such as FortiferTM (fecal sludge-based co-compost) has the potential to generate significant benefits for developing economies via cost recovery for the sanitation sector and the provision of an alternative agricultural input for smallholder farmers. To guide future FortiferTM businesses, this report presents examples of detailed market assessments, based on farmers’ perceptions, attitudes and willingness-to-pay (WTP) for a pelletized and non-pelletized FortiferTM co-compost. The research was conducted in the Greater Accra and Western regions in Ghana, and in and around Kampala (Uganda), Bangalore (India), Hanoi (Vietnam), and Kurunegala (Sri Lanka). Cross-country analyses helped to understand the effects of market drivers and, where possible, capture lessons learned for knowledge sharing.
Resource recovery and reuse (RRR) of domestic and agro-industrial waste has the potential to contribute to a number of financial, socioeconomic and environmental benefits. However, despite these benefits and an increasing political will, there remain significant barriers to build the required up-front capital which is discouraging private sector engagement. A systematic analysis and understanding of the enabling environment, public and private funding sources, risk-sharing mechanisms and pathways for cost recovery can help to identify opportunities to improve the viability of RRR solutions. This report looks at regulations and policies that remove disincentives for RRR, public and private funding sources for capital and operational costs, risk mitigation options through blending and structuring finance, and options for operational cost recovery.
Energy recovery / Communities / Equity / Water management / Waste management / Environmental management / Cost benefit analysis / State intervention / Payment for ecosystem services / Carbon markets / Value chain / Partnerships / Public-private cooperation / Risk management / Agreements / Grants / Loans / Funding / Stakeholders / Regulations / Development policies / Developing countries / Credit policies / Market economies / Incentives / Investment / Cost recovery / Financing / Economic development / Water reuse / Resource management / Resource recovery Record No:H049025
Recovering energy from waste offers dual benefits – a) improved waste management, and b) provision of reliable energy to households, institutions and commercial entities. In this report, we present a socioeconomic assessment of three energy business models (briquette manufacturing, on-site (public toilet) energy generation, and agro-waste electricity generation) based on feasibility studies carried out in the city of Kampala, Uganda. We assess the potential economic, environmental and social impacts of waste-to-energy business models taking into consideration a life cycle of emissions to provide decision makers with the overall costs and benefits of the models to society versus a business-as-usual scenario.
Rivers / Public health / Farmers / Wastewater / Waste management / Excreta / Sanitation / Electricity generation / Household wastes / Benefits / Emission / Methane / Greenhouse gases / Biogas / Gasification / Social impact / Briquettes / Transport / Residues / Agriculture / Fuelwood / Fuels / Economic analysis / Environmental impact assessment / Socioeconomic environment / Models / Business management / Energy generation / Water reuse / Resource recovery Record No:H047671
Recycling and reuse of treated wastewater are an important part of the sanitation cycle and critical in an environment such as urban India with decreasing freshwater availability and increasing costs for delivering acceptable quality water, often from far distance. This report has been developed as a possible guidance document for the Indian government and gives substantial focus to the financial and economic benefits of wastewater recycling from the perspective of public spending. The report presents possible strategies for city and state planners and policymakers in view of the sanitation situation and the role of wastewater recycling in the larger cities in India (class I and II cities and towns with populations above 50,000), and focuses on recycling at the end of sewerage systems after treatment at sewage treatment plants.
Farmers / Farm income / Energy consumption / Greenhouse gases / Fertilizers / Industrial uses / Nutrients / Agriculture / Cost recovery / Economic value / Pollution / Sanitation / Pumping / Groundwater irrigation / Water demand / Freshwater / Water supply / Water resources / Wastewater irrigation / Water supply / Water resources / Wastewater irrigation / Policy making / Urban development / Urban areas / Sewage / Recycling / Water reuse / Wastewater treatment Record No:H047508
Where modern heating and cooking fuels for domestic, institutional, commercial and industrial use are not readily available, briquettes made from biomass residues could contribute to the sustainable supply of energy. This study reviews the briquette making process, looking at the entire value chain starting from the type and characteristics of feedstock used for briquette making to the potential market for briquettes in developing countries. It also analyzes the role that gender plays in briquette production. Depending on the raw materials used and technologies applied during production, fuel briquettes come in different qualities and dimensions, and thus require appropriate targeting of different market segments. Key drivers of success in briquette production and marketing include ensuring consistent supply of raw materials with good energy qualities, appropriate technologies, and consistency in the quality and supply of the briquettes. Creating strong partnerships with key stakeholders, such as the municipality, financiers and other actors within the briquette value chain, and enabling policy are important drivers for the success of briquette businesses.
Economic aspects / Public health / Small scale systems / Production costs / Retail marketing / Marketing / Enterprises / Supply chain / Raw materials / Carbon / Chemicophysical properties / Youth / Men / Women / Gender / Developing countries / Emission / Pollution / Residues / Agricultural sector / Environmental impact / Biomass / Communities / Feedstocks / Energy generation / Energy resources / Cooking / Households / Domestic consumption / Renewable energy / Sewage sludge / Faecal sludge / Recycling / Organic wastes / Industrial wastes / Waste management / Solid wastes / Urban wastes / Fuelwood / Briquettes / Charcoal / Fuel consumption Record No:H047991
On-site sanitation systems, such as septic tanks and pit latrines, are the predominant feature across rural and urban areas in most developing countries. However, their management is one of the most neglected sanitation challenges. While under the Millennium Development Goals (MDGs), the set-up of toilet systems received the most attention, business models for the sanitation service chain, including pit desludging, sludge transport, treatment and disposal or resource recovery, are only emerging. Based on the analysis of over 40 fecal sludge management (FSM) cases from Asia, Africa and Latin America, this report shows opportunities as well as bottlenecks that FSM is facing from an institutional and entrepreneurial perspective.
Biological treatment, composting, in particular, is a relatively simple, durable and inexpensive alternative for stabilizing and reducing biodegradable waste. Co-composting of different waste sources allows to enhance the compost nutrient value. In particular, integration of ‘biosolids’ from the sanitation sector as potential input material for co-composting would provide a solution for the much needed treatment of fecal sludge from on-site sanitation systems, and make use of its high nutrient content. This research paper elaborates in detail the main parameters that govern the co-composting process as well as factors that control the production of a safe and valuable quality compost. It further explains technological options to tailor the final product to crop and farmer needs.
Case studies / Trees / Deltas / Irrigation / Greenhouses / Horticulture / Solar energy / Energy generation / Phosphogypsum / Magnesium / Soil properties / Freshwater / Recycling / Water reuse / Drainage water / Water productivity / Water resources / Aquaculture / Ecosystems / Crop production / Desalination / Soil salinity / Sodic soils / Saline water / Land degradation / Land resources Record No:H046996